
DOI 10.1140/epja/i2004-10148-y

Eur. Phys. J. A 24, 389–394 (2005) THE EUROPEAN
PHYSICAL JOURNAL A

Momentum-dependent mean field in π0 production in Nb + Nb
collisions

G. Russo1, A. Insolia1,a, U. Lombardo1, and N.G. Sandulescu2

1 Department of Physics and Astronomy, University of Catania and INFN, Via S. Sofia 64, I-95123 Catania, Italy
2 Institute of Atomic Physics, Bucharest Magurele, POB MG 6, Romania

Received: 26 June 2004 / Revised version: 18 February 2005 /
Published online: 2 June 2005 – c© Società Italiana di Fisica / Springer-Verlag 2005
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Abstract. The Boltzmann-Nordheim-Vlasov (BNV) equation has been solved by using a microscopic
momentum-dependent (MD) nuclear mean field. This potential has been calculated in the framework
of the self-consistent Brueckner theory up to the second order in the G-matrix. Comparison with the so-
called soft and stiff Equation of State (EOS) is presented, using the Skyrme force. Calculations have been
performed for the 93Nb + 93Nb reaction at Elab = 100, 250, 400 A MeV. Our results show that the sub-
threshold π0 production cross-section is very sensitive to the momentum-dependent mean field, resulting,
at the lowest energy, in a total cross-section a factor of 7 larger than that obtained with a local potential.
The effect decreases as the bombarding energy increases.

PACS. 21.60.Jz Hartree-Fock and random-phase approximations – 25.70.-z Low and intermediate energy
heavy-ion reactions

1 Introduction

The question whether the equation of state (EoS) of nu-
clear matter is stiff or soft is still largely controversial.
No clear answer has been given so far either in Heavy-Ion
Collisions (HIC) and in astrophysics. The idea that the
sideward flows observed in HIC at intermediate energy
could be a signature of a high incompressibility of nuclear
matter has received a strong support by a lot of dynam-
ical simulations using phenomenological mean fields such
as the stiff Skyrme force. But it has been very soon rec-
ognized that similar predictions can be obtained also by
using a soft EoS whose mean field is momentum depen-
dent (MD) [1,2]. The momentum dependence reflects the
non-local nature of the optical potential in elastic nucleon
scattering and results in a nuclear mean field which be-
comes less and less attractive as far as its momentum in-
creases and repulsive at k larger than 3–4 fm−1.

The mean fields used in dynamical simulations of HIC,
as well as their MD extensions, do not rely on a micro-
scopic basis. This drawback becomes more serious as far
as one wants to introduce in the equations an in-medium
cross-section consistent with the used mean field.

The potential we used in our calculations has been
derived from the Brueckner-Bethe-Goldstone (BBG) ap-
proach, with the Paris potential as input for the realis-
tic interaction [3]. To the Brueckner-Hartree-Fock (BHF)
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term, describing the polarization potential, we added the
second-order contribution in the G-matrix. This correc-
tion includes the two-particle–two-hole excitations prob-
ing the ground-state correlations in nuclear matter.

In this paper we will study π0 production in 93Nb
+ 93Nb collisions at three bombarding energies, Elab =
100, 250, 400 A MeV, exploiting the whole range of impact
parameters.

The mean field will be discussed in the next section
while applications and conclusions are reported in the last
two sections.

2 Momentum-dependent mean field from the

Brueckner theory

In this section we describe the formalism of the Brueckner-
Bethe-Goldstone (BBG) theory [4,5]. The starting point
of the BBG theory is the Brueckner reaction matrix G,
which satisfies the Bethe-Goldstone equation,

G(ρ, β;ω) = vNN + vNN

×
∑

k1k2

|k1k2〉Q(k1, k2)〈k1k2|

ω − ε(k1)− ε(k2) + iη
G(ρ, β;ω) , (1)

where vNN is the two-body nuclear interaction and ω the

starting energy. Here k ≡ (~k, σ, τ) denotes s.p. momen-
tum, z-components of spin and isospin, respectively. ρ is
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Fig. 1. First-order particle and hole potentials with their ex-
change terms. Wiggles are G-matrix elements.

the total density of the system and β = N−Z
A

is the isospin
asymmetry parameter. The G-matrix can be considered as
an in-medium effective interaction between two nucleons.
The surrounding nucleons renormalize the bare NN inter-
action via the Pauli blocking and the nuclear mean field.
The Pauli operator, defined as

Q(k1, k2) = [1− n(k1)][1− n(k2)] , (2)

prevents two nucleons in intermediate states from scat-
tering into states inside their respective Fermi seas. By
n(k) we denote the Fermi distribution function, which at
zero temperature is given by the step function θ(k − kτ

F)
(uncorrelated ground state), being kτF the Fermi momen-
tum of the nucleon with isospin τ . The single-particle
(s.p.) energy

ε(k) =
~

2k2

2m
+ U(k) , (3)

appearing in the energy denominator of eq. (1), involves
the auxiliary potential U(k), which controls the conver-
gence rate of the hole-line expansion. Within the BHF
approximation the auxiliary potential is defined as

U(k) =
∑

k′

n(k′)Re〈kk′|G(ε(k) + ε(k′))|kk′〉A . (4)

Here we adopt the continuous choice [6], which extends
the definition of U(k) to any k. This choice for the
auxiliary s.p. potential makes the convergence of the
hole-line expansion much faster than other choices [7].

The self-energy M(k, ω) = V (k, ω) + iW (k, ω), whose
real part can be identified as the potential energy felt by a
nucleon, can be expanded in a perturbation series accord-
ing to the number of hole lines [8,9] and various terms of
this expansion can be represented by means of Goldstone
diagrams shown in figs. 1 and 2.

The quasi-particle energy E(k) is the solution of the
energy-momentum relation

E(k) =
~

2k2

2m
+ V (k,E(k)) . (5)

To the lowest order in the hole-line expansion the self-
energy is given by (diagrams in fig. 1)

M1(k, ω) =
∑

k′

n(k′)〈kk′|G(ω + ε(k′))|kk′〉A. (6)

Fig. 2. Second-order particle and hole potentials with their
exchange terms. Wiggles are G-matrix elements.

In the previous expression as in what follows the explicit
summation over the isospin index on the right-hand side
will be understood and thus omitted. For more details we
refer to [9]. In this approximation the quasi-particle energy
E1 coincides with the BHF s.p. energy given by eqs. (3)
and (4), i.e., E1 = ε(k).

The next contribution to the perturbative expansion
of the self-energy is given by the so-called rearrangement

term M2(k, ω) [6]. The associated Goldstone diagrams are
represented by the diagrams of fig. 2. M2 is a second-order
diagram in the G-matrix and accounts for particle-hole
excitations in nuclear matter. Its expression reads

M2(k, ω) =
1

2

∑

k′

(1− n(k′))

×
∑

k1k2

n(k1)n(k2)
|〈kk′|G(ε(k1) + ε(k2))|k1k2〉A|

2

ω + ε(k′)− ε(k1)− ε(k2)− iη
, (7)

where ε(k) is the s.p. spectrum in BHF approximation
given by eqs. (3) and (4). In this approximation for the
self-energy the quasi-particle energy (5) is given by the
approximate relation

E2(k) = E1(k)+Z2(k)V2(k) =
~

2k2

2m
+V1(k)+Z2(k)V2(k) ,

(8)
where

Z2(k) =

{

1−
∂

∂ω

[

V1(k, ω) + V2(k, ω)

]

}

−1

ω=E1(k)

(9)

is an approximation of the quasi-particle strength for
asymmetric nuclear matter

Z(k) =

{

1−
∂

∂ω

[

V (k, ω)

]

}

−1

ω=E(k)

. (10)

In the preceding equations V1 and V2 are the on-shell val-
ues of M1 and M2, respectively, and represent the mean
field employed in our dynamical simulations. They have
been calculated in the framework of the Brueckner theory.

The neutron (proton) s.p. potentials (V and W are the
real and imaginary part, respectively) are plotted vs. mo-
mentum in figs. 3 and 4 in asymmetric nuclear matter at
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Fig. 3. Real part (upper panels) and imaginary part (lower
panels) of the first-order single-particle potentials M1 for pro-
ton (left panel) and neutron (right panel) for different asym-
metry parameters at density ρ = 0.17 fm−3.

Fig. 4. Real part (upper panels) and imaginary part (lower
panels) of the second-order single-particle potentials M2 for
proton (left panel) and neutron (right panel) for different asym-
metry parameters at density ρ = 0.17 fm−3.

the saturation density for the first-order and second-order
expansions, respectively, for a few values of the asymme-
try parameter β [9]. The realistic interaction adopted in
the calculations is the AV 14 [10]. The combination of the
two terms produces a MD mean field which exhibits a
flat behavior for k up to kF. This means that, for low-
momentum events, the momentum dependence is of no

influence, whereas it results in a strong extra-repulsion in
the momentum range above the Fermi energy.

Within the present BBG approach, higher-order cor-
rections were recently calculated [9] as well as applications
in transverse-flow calculations [11]. The inclusion of the
third-order contributions in the G-matrix expansion do
not produce major modifications in the microscopic mean
field [12].

Those higher-order corrections were not included in
the mean field used in the present paper and we refer
to the figs. 1a, b of ref. [11] for additional details of the
density and momentum dependence of the potential. It is
worthwhile to stress that the MD potential obtained from
our BBG approach is parameter free. In the momentum
range up to kF, the potential does not appreciably vary.
This momentum range is of great relevance to the EoS,
because all physical quantities are contributed only from
inside the Fermi sphere, at least at zero temperature.

The differences in the momentum dependence are quite
evident, not only in the absolute value, but also in the
slope. The momentum profile of the BBG potential is flat
in the region of low and high momenta, giving there a
vanishing momentum gradient in the BNV equation. The
main effects have to be expected in the intermediate re-
gion, where the slope is the steepest.

3 Kinetic calculations

A semiclassical dynamical approach based on the BNV
equation has been widely used to study the heavy-ion col-
lisions at intermediate energy. In this framework, the nu-
clear many-body system is described by means of a time
evolution equation for the one-body phase-space distribu-
tion function f(~r, ~p, t) in a dynamics ruled by the competi-
tion of mean field and two-body collisions effects, namely

∂f

∂t
+ {f, h} = Icoll(f) , (11)

where {f, h} represent the Poisson brackets, h is the self-
consistent single-particle Hamiltonian including the one-
body momentum-dependent mean-field potential derived
in sect. 2 and defined as

h(~r, ~p, t) =
p2

2m
+ V (~r, ~p, t), (12)

where
V (~r, ~p, t)

is either the soft (hard) local Skyrme potential or the first-
and second-order single-particle potential (M1 +M2) de-
fined in the previous section. Finally, Icoll is the collision
integral assumed of Uehling-Uhlembeck type.

In the next section a very brief account on the pion
production calculation will be given. Here we will discus
the BNV equation solution method. The study of heavy-
ion collisions by means of eq. (11) is essentially a numerical
task which is generally solved using the pseudo-particles
method [13], in which the one-body phase-space distri-
bution function is represented by a collection of N test
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particles, whose coordinates and momenta are evolved in-
dividually with a time step ∆t. In the actual numerical
simulations, the BNV equation is separated into a classi-
cal Hamilton’s equation of motion for the propagation of
the pseudo-particles, which are governed on the one hand,
by an appropriate mean field and, on the other hand, by
the stochastic two-body collisions caused by the residual
nucleon-nucleon (NN) interaction.

Therefore, there are two essential ingredients: the
mean-field potential and the in-medium NN scatter-
ing cross-section. In our calculation soft and hard local
Skyrme potential (soft and hard cases correspond to com-
pressibility K = 200 MeV or K = 380 MeV, respectively)
and the microscopic momentum-dependent mean field are
used for a comparison.

The test particles are described in terms of Gaussian
functions, both in coordinate and momentum space with a
fixed widths σr and σp [14]. The ground state is prepared
by a Monte Carlo sampling the phase space with a vari-
ational self-consistent procedure to reproduce the nuclear
binding energy. The collision integral is treated stochasti-
cally allowing the test particles to undergo collisions with
a probability proportional to the Pauli-blocking–corrected
nucleon-nucleon cross-section. The collisional criterion for
the test particles is that based on the local-mean-path
concept [8,9].

The two parameters entering the computer simulation
of the collision integral are the number N of test particles
per nucleon and the integration time step. Typically N ≥
50 Gaussian packets are needed to smoothly represent an
observable such as the position or momentum distribution,
while for steps ∆t ≤ 1.0 fm/c, the results do not depend
very much on the time step of the simulation.

In our calculations, numerical convergence was assured
with N = 100 and ∆t = 0.5 fm/c.

For additional details on the numerical solution tech-
nique of the BNV equation we direct the reader to previous
papers [1–11] and references therein.

4 Subthreshold π0 production in Nb + Nb

reaction

A technical problem in treating subthreshold pion produc-
tion within the BNV model is that the numerical statistics
from a straightforward use of the elementary cross-section
would be very poor. Thus, we deal with this problem by
calculating, at each test particle collisions of interest, the
production probability and sum incoherently over these
collisions in the whole nucleus-nucleus collisional event.
In the perturbative approach [15], the recoil momentum
for the final nucleons in the calculation of the time evo-
lution of the heavy-ion system is then neglected. Within
this picture, the Lorentz-invariant triple differential pion
production cross-section, at a fixed impact parameter b is
given by the sum of all possible nucleon-nucleon collisions
of interest with the Pauli blocking for the final nucleon

Fig. 5. Differential cross-sections for π0 production in the
93Nb + 93Nb reaction at Elab = 100 A MeV. Comparison
is shown between the results obtained using the local Skyrme
potential (soft and hard EoS) and the microscopic momentum-
dependent (MD) mean field. Stars refer to the calculations with
the microscopic mean field, circles to soft Skyrme interaction
and crosses to hard Skyrme interaction.

states taken into account

1

pπ

d3σπ

dEπdΩπdb
= 2πb

∑

NNcoll(b)

∫

dΩq

4π

1

p′π

d2P elem
NNπ

dE′πdΩ
′

π

PBPesc .

(13)
The primed and unprimed parameters denote quanti-

ties in the individual NN center-of-mass and laboratory
frames, respectively. Ωq is the solid angle of the relative
momentum between the final nucleons which is not fixed
by energy and momentum conservation and has to be av-
eraged out. P elem

NNπ represents the π production probability
in an elementary NN collision, PB is the final-state Pauli-
blocking factor determined from the occupation proba-
bilities of the final nucleons in the phase space and Pesc

represents the pion escape probability. The P elem
NNπ prob-

ability has been evaluated using for the nucleon-nucleon
collisions the free N -N cross-section whose energy and
angular dependence has been properly accounted for [15].
For the elementary NN → N ′N ′π probability, we used
the parametrization of ref. [15]. While a consistent treat-
ment of pion reabsorption in the subthreshold region has
not yet been achieved, we introduce a phenomenological
approach of ref. [16]. Whenever a pion is created, we fol-
low its path inside the nuclear medium assuming it moves
on a straight line determined by its momentum ~pπ. Thus,
the pion has to travel, inside the nuclear region, an effec-
tive distance dynamically depending on the surrounding
medium and given by

d(~rπ, p̂π, t) =
1

ρ0

∫ +∞

0

ρ(~rπ + p̂πs, t)ds , (14)
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Fig. 6. Differential cross-sections for π0 production in the
93Nb +93 Nb reaction at Elab = 250, 400 A MeV. As in fig. 4,
comparison is shown between the results obtained using the lo-
cal Skyrme potential (soft and hard EoS) and the microscopic
momentum-dependent mean field. The meaning of the symbols
is the same as in fig. 4.

where (~rπ, t) are the pion production space-time coor-
dinates, ρ is the nucleons density and ρ0 its saturation
value for the normal nuclear matter. The escape pion
probability is then given by Pesc = exp(−d/λ0), where
λ0 = (σabsρ0)

−1 represents the mean absorption lenght in
normal nuclear matter. Both optical model [17] and trans-
port [18] calculations predict a pion absorption mean free
path which is dependent on the pion energy. For our cal-
culation we have used a parametrization of the energy
dependence of λ0 given in ref. [18].

In the framework of the BBG approach the in-medium
cross-section can be self-consistently calculated with the
mean field by means of the G-matrix [19–22].

In figs. 5 and 6 the differential cross-sections for π0

production are reported for three different energies. In
fig. 5 the results for the case of Elab = 100 A MeV are
reported. In fig. 6 the case of Elab = 250, 400 A MeV
is considered. Comparison is shown between the results
obtained using the local Skyrme potential and the micro-
scopic momentum-dependent mean field. It is very clear
the effect of the momentum dependence at low energy. At
100 MeV the cross-section is about 6–7 times larger when
the MD potential is used. The difference is not so large
when the bombarding energy increases, even if still ap-
preciable. By integrating the differential cross-section of
fig. 5 with the MD potential option we produce a total π0

production cross-section equal to 0.2 mb, which is in quite
good agreement with the expected extrapolated trend of
experimental data [23]. Thus, the large enhancement (of
a factor of 7, or so) produced by the MD potential goes in

Fig. 7. Top: π0 production multiplicity vs. collision time and
bottom: ratio ρ/ρ0 vs. collision time in the 93Nb +93 Nb re-
action at Elab = 100 A MeV. The circles refer to the case of
the momentum-dependent microscopic mean field, while the
crosses to the case of a soft local Skyrme potential.

the right direction, even if a slightly larger value of the cal-
culated total production cross-section should be in order
to better agree with the extrapolated experimental trend
at Elab = 100 A MeV.

The pion multiplicity vs. time, at Elab = 100 A MeV
during the collision is shown in fig. 7, upper panel. The
calculated density, actually ρ/ρ0, vs. collision time is given
in fig. 7, lower panel. The pion multiplicity reaches a satu-
rating plateau at t = 30 fm/c, when the compression has
a maximum. Again the calculations with MD mean field
are compared with those using a soft Skyrme local poten-
tial. The same type of comments as above applies. The
π0 production shows an enhancement in the early stages
of the collisions when the colliding nuclei explore a fast
compression phase. The specific momentum and density
dependences of the mean field are responsible for the ob-
served enhancement of the pion multiplicity.

In conclusion, in this work we have reported kinetic
calculations about π0 production using a microscopic MD
mean field. We have found that pion production is a very
sensitive probe to the EoS entering the calculations, espe-
cially when the bombarding energy per nucleon is below
the NN threshold. In particular, at Elab = 100 A MeV,
the total pion cross-section for the momentum-dependent
mean field is about a factor 7 larger than the correspond-
ing value obtained with a local (soft and hard) Skyrme
potential. This enhancement is in agreement with the ob-
served trend of experimental data and also with the con-
clusions from kaon production calculations [19,24].
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16. A. Badalá, R. Barbera, A. Palmeri, G.S. Pappalardo, F.
Riggi, A.C. Russo, G. Russo, R. Turrisi, C. Agodi, R. Alba,
G. Bellia, R. Coniglione, A. Del Zoppo, P. Finoccchiaro, C.
Maiolino, E. Migneco, P. Piattelli, P. Sapienza, A. Peghaire
Phys. Rev. C 48, 2350 (1993).

17. R.A. Mehrem, H.M.A. Radi, J.O. Rasmussen, Phys. Rev C
30, 301 (1984); P. Hecking, Phys. Lett. B 103, 401 (1981).

18. J. Huefner, M. Thies, Phys. Rev. C 20, 273 (1979).
19. W. Cassing, U. Mosel, Prog. Part. Nucl. Phys. 25, 253

(1990).
20. J. Cugnon, A. Lejeune, P. Grangé, Phys. Rev. C 35, 861
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